

Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks

Zhiqian Chen, Ph.D. Assistant Professor

Computer Science And Engineering Mississippi State University

Outline

Research Overview

• Framework

- Graph Convolution
- Linear, Polynomial, Rational
- Discussion
- Conclusion

Graph Machine Learning

Machine Learning Block Split

Geometric Split

Graph is Pervasive

Convolutional Neural Layer

Challenge for non-Euclidean

dynamic # of neighbors

Research Overview

- Framework
 - Graph Convolution
 - Linear, Polynomial, Rational
 - Discussion
- Conclusion

Spectral Analysis

credit: giphy

$$= w_0 \cdot - + w_1 \cdot \wedge + w_2 \cdot \wedge + w_3 \cdot \wedge + \dots$$

Spectral Analysis for Graph

Graph Fourier Transform (Spectral Decomposition)

What is Graph Convolution

Convolution Theorem

 Fourier transform of the convolution of two functions is equal to the point-wise multiplication of their Fourier transforms.

dynamic # of neighbors

What is Graph Convolution

Chung, Fan RK. *Spectral graph theory*. Vol. 92. American Mathematical Soc., 1997.

What is Graph Convolution

Motivation: A Unified View

• What is the space and frequency look like in graph domain?

Convolution theorem

 $f(x,y) * h(x,y) \Leftrightarrow F(u,v)H(u,v)$

Space convolution = frequency multiplication

Motivation: A Unified View

• Challenge for research: no uniform framework to compare them

Research Overview

• Framework

- Graph Convolution
- Linear, Polynomial, Rational
- Discussion
- Conclusion

Understand Graph Neural Networks

• Method Overview:

- Goal: Understand Graph Neural Network in Theory
- Advantage: Theoretical understanding in perspective of approximation theory and spectral graph theory
- Higher-order: polynomial and rational approximation

- a. <u>Zhiqian Chen</u>, Fanglan Chen, Lei Zhang, Taoran Ji, Kaiqun Fu, Liang Zhao, Feng Chen, Lingfei Wu, Charu Aggarwal, Chang-Tien Lu. "Bridging the gap between spatial and spectral domains: A unified framework for graph neural networks." ACM Computing Survey, 2023
- b. <u>Zhiqian Chen</u>, Feng Chen, Rongjie Lai, Xuchao Zhang, Chang-Tien Lu. **Rational Neural Networks for Approximating Graph** Convolution Operator on Jump Discontinuities, IEEE International Conference on Data Mining (ICDM) 2018

TABLE 2. Representations for graph topology

Notations	Descriptions	
Α	Adjacency matrix	
L	Graph Laplacian	
$\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$	Adjacency with self loop	
$\mathbf{D}^{-1}\mathbf{A}$	Random walk row normalized adjacency	
$\mathbf{A}\mathbf{D}^{-1}$	Random walk column normalized adjacenc	
$D^{-1/2} A D^{-1/2}$	Symmetric normalized adjacency	
$\tilde{\mathbf{D}}^{-1}\tilde{\mathbf{A}}$	Left renormalized adjacency, $\tilde{\mathbf{D}}_{ii} = \sum_{j} \tilde{\mathbf{A}}_{ij}$	
$\tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-1}$	Right renormalized	
$\tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2}$	$\tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-1/2}$ Symmetric renormalized	
$(\tilde{\textbf{D}}^{-1}\tilde{\textbf{A}})^k$) ^k Powers of left renormalized adjacency	
$(\tilde{A}\tilde{D}^{-1})^k$	Powers of right renormalized adjacency	

- Suppose a two-cluster partitioning for A and B
 - Ratio Cut: $cut(A,B)(\frac{1}{|A|} + \frac{1}{|B|})$

- Normalized Cut:
$$cut(A,B)(\frac{1}{Vol(A)} + \frac{1}{Vol(B)})$$

Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17 (2007): 395-416.

Suppose a two-cluster partitioning for A and B Ratio Cut: $cut(A,B)(\frac{1}{|A|} + \frac{1}{|B|})$

Rayleigh-Ritz Theorem The following quotient is minimized when $f = u_2$

$$\arg\min_{f} = \frac{f^{T}Lf}{f^{T}f}$$

Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17 (2007): 395-416.

Suppose a two-cluster partitioning for A and B Normalized Cut: $cut(A,B)(\frac{1}{Vol(A)} + \frac{1}{Vol(B)})$

Rayleigh-Ritz Theorem The following quotient is minimized when $f = u_2$

$$\arg\min_{f} \frac{f^{T}Lf}{f^{T}Df'} = \min\frac{f^{T}\tilde{L}f}{f^{T}f}$$

Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17 (2007): 395-416.

- Left normalization (row-wise)
 - Row: normalized by the diagonal entry

E.g.,
$$a_{2,3} \leftarrow \frac{a_{2,3}}{d_2}$$

Right normalization (column-wise)

_ E.g.,
$$a_{2,3} \leftarrow \frac{a_{2,3}}{d_3}$$

Symmetric normalization

$$\textbf{-} \text{E.g., } a_{2,3} \leftarrow \frac{a_{2,3}}{\sqrt{d_2}\sqrt{d_3}}$$

Case Study: GCN

Case Study: DeepWalk

• Draw a group of random paths from a graph

$$\tilde{\mathbf{A}} = \mathbf{D}^{-1} \mathbf{A}$$

 Let the window size (path length) of skip-gram be 2t+1 and the current node is the (t+1)-th

$$\mathbf{Z} = \frac{1}{t+1} (\mathbf{I} + \tilde{\mathbf{A}} + \tilde{\mathbf{A}}^2 + \dots + \tilde{\mathbf{A}}^t) \mathbf{X}$$

Spatial-based GNN

Spatial

Linear $\int \mathbf{Linear} = \mathbf{h} (\mathbf{h} + \mathbf{h}) \mathbf{h} (\mathbf{h} + \mathbf{h}) \mathbf{h} (\mathbf{h}) \mathbf{h} \mathbf{h} (\mathbf{h}) \mathbf{h} (\mathbf{h})$

DeepWalk Bryan Perozzi et al. (2014) $Z = \frac{1}{t+1} \left(\mathbf{I} + \tilde{\mathbf{A}} + \tilde{\mathbf{A}}^2 + \dots + \tilde{\mathbf{A}}^t \right) \mathbf{X} = \frac{1}{t+1} \mathbf{P}(\tilde{\mathbf{A}}) \mathbf{X}$ **ChebyNet** Defferrard, Michael et al. (2016) $Z = \sum_{k=0}^{K-1} \theta_k T_k(\tilde{\mathbf{L}}) \mathbf{X} = \left[\tilde{\theta}_0 \mathbf{I} + \tilde{\theta}_1 (\mathbf{I} - \tilde{\mathbf{A}}) + \tilde{\theta}_2 (\mathbf{I} - \tilde{\mathbf{A}})^2 + \dots \right] \mathbf{X} = \left(\phi \mathbf{I} + \sum_{i=1}^k \psi_i \tilde{\mathbf{A}}^i \right) \mathbf{X} = \mathbf{P}(\tilde{\mathbf{A}}) \mathbf{X}$ **Node2Vec** Aditya Grover et al. (2016) $Z = \left(\frac{1}{p} \cdot \mathbf{I} + \tilde{\mathbf{A}} + \frac{1}{q} \left(\tilde{\mathbf{A}}^2 - \tilde{\mathbf{A}} \right) \right) \mathbf{X} = \left[\frac{1}{p} \mathbf{I} + \left(1 - \frac{1}{q} \right) \tilde{\mathbf{A}} + \frac{1}{q} \tilde{\mathbf{A}}^2 \right] \mathbf{X} = \mathbf{P}(\tilde{\mathbf{A}}) \mathbf{X}$

Spectral-based GNN

Spectral

function of Eigenvalues

Polynomial and Rational

easy to compute hard to be accurate

easy to be accurate

Rational Neural Network: iteratively close to the target

Telgarsky, M. (2017, July). Neural networks and rational functions. In International Conference on Machine Learning Boullé, N., Nakatsukasa, Y., & Townsend, A. (2020). Rational neural networks. Advances in neural information processing systems Zhiqian Chen, et al. Rational Neural Networks for Approximating Graph Convolution Operator on Jump Discontinuities, ICDM 2018

Spatial

Polynomial $\mathbf{P}(\mathbf{L})$ ${\boldsymbol{\mathcal{X}}}$ Label propagation Rational $\mathbf{P}(\mathbf{L})\mathbf{Q}(\mathbf{L})$ ${\boldsymbol{x}}$ Label propagation **Reverse Label propagation**

FIG. 6. Left: Residual Learning x' = F(x) + x; Right: Rational Aggregation: x' = F(x) + x

Use personalized PageRank matrix Π_{ppr} to propagate further while retaining information about root node, adjust via teleport probability α :

$$\boldsymbol{\Pi}_{\rm ppr} = \alpha \left(\boldsymbol{I}_n - (1 - \alpha) \boldsymbol{\hat{A}} \right)^{-1}$$

Spatial

Spatial-based GNN

Spectral-based GNN

Spectral

 $\mathbf{Z} = \tilde{\mathbf{A}}\mathbf{X} = \mathbf{D}^{-\frac{1}{2}}(\mathbf{A} + \mathbf{I})\mathbf{D}^{-\frac{1}{2}}\mathbf{X} = \mathbf{D}^{-\frac{1}{2}}(\mathbf{D} - \mathbf{L} + \mathbf{I})\mathbf{D}^{-\frac{1}{2}}\mathbf{X} = (\mathbf{I} - \mathbf{L} + \mathbf{I})\mathbf{D}^{-\frac{1}{2}}\mathbf{X} = \mathbf{U}(2 - \Lambda)\mathbf{U}^{\mathsf{T}}\mathbf{X}$ GraphSAGE Will Hamilton et al. (2017)

$$Z = D^{-\frac{1}{2}}(I + A)D^{-\frac{1}{2}}X = (I + \tilde{A})X = (2I - \tilde{L})X = U(2 - \Lambda)U^{T}X$$

$$\mathbf{Z} = \mathbf{D}^{-\frac{1}{2}}[(1+\epsilon)\mathbf{I} + \mathbf{A}]\mathbf{D}^{-\frac{1}{2}}\mathbf{X} = \mathbf{D}^{-\frac{1}{2}}[(2+\epsilon)\mathbf{I} - \tilde{\mathbf{L}}]\mathbf{D}^{-\frac{1}{2}}\mathbf{X} = \mathbf{U}(2+\epsilon-\Lambda)\mathbf{U}^{\mathsf{T}}\mathbf{X}$$

DeepWalk Bryan Perozzi et al. (2014) $\mathbf{Z} = \frac{1}{t+1} \left(\mathbf{I} + (\mathbf{I} - \tilde{\mathbf{L}}) + (\mathbf{I} - \tilde{\mathbf{L}})^2 + \dots + (\mathbf{I} - \tilde{\mathbf{L}})^t \right) \mathbf{X} = \mathbf{U} \left(\theta_0 + \theta_1 \Lambda + \theta_2 \Lambda^2 + \dots + \theta_t \Lambda^t \right) \mathbf{U}^{\mathsf{T}} \mathbf{X}$

ThebyNet Defferrard, Michael et al. (2016)

$$\mathbf{Z} = \sum_{k=0}^{K-1} \theta_k T_k(\tilde{\mathbf{L}}) \mathbf{X} = \mathbf{U} \left(\tilde{\theta}_0 \cdot 1 + \tilde{\theta}_1 \Lambda + \tilde{\theta}_2 \Lambda^2 + \dots \right) \mathbf{U}^{\mathsf{T}} \mathbf{X}$$

Node2Vec Aditya Grover et al. (2016) $\mathbf{Z} = \left[\left(1 + \frac{1}{p} \right) \mathbf{I} - \left(1 + \frac{1}{q} \right) \tilde{\mathbf{L}} + \frac{1}{q} \tilde{\mathbf{L}}^2 \right] \mathbf{X} = \mathbf{U} \left[\left(1 + \frac{1}{p} \right) - \left(1 + \frac{1}{q} \right) \tilde{\boldsymbol{\Lambda}} + \frac{1}{q} \tilde{\boldsymbol{\Lambda}}^2 \right] \mathbf{U}^{\mathsf{T}} \mathbf{X}$

Personalized PageRank Johannes Klicpera et al. (2018)

 $\mathbf{Z} = \frac{\alpha}{\mathbf{I} - (1 - \alpha)(\mathbf{I} - \tilde{\mathbf{L}})} \mathbf{X} = \mathbf{U} \frac{\alpha}{\alpha \mathbf{I} + (1 - \alpha)\Lambda} \mathbf{U}^{\mathsf{T}} \mathbf{X}$

ARMA Filter Filippo Maria Bianchi et al. (2018)

$$\mathbf{Z} = \frac{b}{1 - a(\mathbf{I} - \tilde{\mathbf{L}})} \mathbf{X} = \mathbf{U} \frac{b}{(1 - a)\mathbf{I} + a\Lambda} \mathbf{U}^{\mathsf{T}} \mathbf{X}$$

Auto Regressive Filter Qimai Li et al. (2019)

The Unified Framework

Complex, Powerful

Research Overview

• Framework

- Graph Convolution
- Linear, Polynomial, Rational

Discussion

Conclusion

Spatial v.s. Spectral

	Methodology	Computation	Space Complexity	Stability
Spectral	Global	One-step	High	Exact
Spatial	Local	Iterative	Low	Approximate

- Approximation by Implicit Matrix Factorization (MF)
 - Word2Vec Tomas Mikolvet et al. (2013)

W2V as Implicit MF Omer Levy et al. (2014)

$$WC^{I} = M$$

Shifted PMI (co-occurrence matrix)

Spatial v.s. Spectral

	Methodology	Computation	Space Complexity	Stability
Spectral	Global	One-step	High	Exact
Spatial	Local	Iterative	Low	Approximate

- Approximation by Implicit Matrix Factorization (MF)
 - SpectralNet Uri Shaham et al. (2018)

Spatial v.s. Spectral

	Methodology	Computation	Space Complexity	Stability
Spectral	Global	One-step	High	Exact
Spatial	Local	Iterative	Low	Approximate

- Approximation by Implicit Matrix Factorization (MF)
 - DeepWalk Bryan Perozzi et al. (2014)

$$\log\left(\frac{|(w,c)| \cdot |\mathcal{D}|}{|w| \cdot |c|}\right) - \log b = AB^{\top}$$

$$\log\left(\mathbf{P}(\tilde{\mathbf{A}})\right) - \log(b) = \log\left(\frac{|E|}{T}\left(\sum_{r=1}^{T} (\mathbf{D}^{-1} \mathbf{A})^{r}\right) \mathbf{D}^{-1}\right) - \log(b)$$

$$\#step$$

Qiu, Jiezhong, et al. "Network embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec." *Proceedings of the eleventh ACM international conference on web search and data mining*. 2018.

Why Rational, and Why Not?

Most graph signals are homophily (not homogenous)

- Low-frequency signals

Maehara, T. (2019). Revisiting graph neural networks: All we have is low-pass filters. arXiv preprint arXiv:1905.09550.

- \odot Approximation theory: rational is better when order ≥ 5
 - Target signals (function of eigenvalues) should be not simple, smooth.
- Computational Complexity
 - Matrix Inversion

Future Direction

PDE

- Wave v.s. Diffusion
- Spectral graph beyond simple type
 - Signed, directed, hypergraph, multilayer network
- Oynamic graph
 - Graph wavelet
- LLM

2.5 COMPARISON OF WAVES AND DIFFUSIONS

Property		Waves	Diffusions
(i)	Speed of propagation?	Finite $(\leq c)$	Infinite
(ii)	Singularities for $t > 0$?	Transported along characteristics (speed = c)	Lost immediately
(iii)	Well-posed for $t > 0$?	Yes	Yes (at least for bounded solutions)
(iv)	Well-posed for $t < 0$?	Yes	No
(v)	Maximum principle	No	Yes
(vi)	Behavior as $t \to +\infty$?	Energy is constant so does not decay	Decays to zero (if ϕ integrable)
(vii)	Information	Transported	Lost gradually

Strauss, W. A. (2007). Partial differential equations: An introduction. John Wiley & Sons.

Related Resources

Awesome Spectral Graph Neural Networks

PRs Welcome 🛶 awesome

Contents

- Survey Papers
- Milestone Papers
- Spatial and Spectral Views
- Twin Papers
- Applications
- Code
- <u>Citation</u>

github.com/XGraph-Team/Spectral-Graph-Survey

Research Overview

• Framework

- Graph Convolution
- Linear, Polynomial, Rational
- Discussion

Conclusion

- Connection between spectral and spatial domain
 - Spatial: function of adjacency matrix
 - Spectral: function of eigenvalues
- Inear, polynomial and rational function
 - more power, more computation
- Computation
 - Spatial method: iterative and cheap approximation
 - Spectral method: one-step, expensive and exact