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Graph Machine Learning
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Train Test Machine Learning  
Block Split

Graph Machine Learning 
Geometric Split
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Graph is Pervasive

Chemical Structure

BrainSocial Networks Internet

Covid-19

Particle System 
(Physics)Internet of Things

https://github.com/MilesCranmer/symbolic_deep_learning
https://github.com/MilesCranmer/symbolic_deep_learning


Convolutional Neural Layer
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Challenge for non-Euclidean
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Spectral Analysis
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https://giphy.com/gifs/animation-transform-functions-B95LXCXM5LLfa


Spectral Analysis for Graph
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Graph Structure

w1 ⋅ w2 ⋅ w3 ⋅w0 ⋅

eigen-vector 0 eigen-vector 1 eigen-vector 2 eigen-vector 3

Graph Signal (e.g.,Traffic Speed)

wspeed
1 ⋅ wspeed
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0 ⋅

Graph Fourier Transform (Spectral Decomposition)

Minnesota Road Networks



What is Graph Convolution

๏ Convolution Theorem

- Fourier transform of the convolution of two functions is equal to the 
point-wise multiplication of their Fourier transforms. 
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Credit: Sandipan Dey
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What is Graph Convolution
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Spectral Domain Spatial DomainSpatial Domain

Graph 
Signal

Graph 
Structure

Convolution

new node 
representation

graph Fourier 
transform 

inverse  
graph Fourier 

transform 

w

wg = g(λ)

Chung, Fan RK. Spectral graph theory. Vol. 92. American Mathematical Soc., 1997.



What is Graph Convolution
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1

3

graph Fourier transform

Inverse graph Fourier transform

2 convolution (theorem)

Graph Structure Graph Signal (e.g.,Traffic Speed)



Motivation: A Unified View

๏ What is the space and frequency look like in graph domain?
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Motivation: A Unified View

๏ Challenge for research: no uniform framework to compare them
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Spectral Graph Message Passing

Low-pass Filter

Random WalkPage Rank

Heat Diffusion

Graph Wavelet Attention Model
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SS Design space

๏ A large number of graph neural networks, 
with different mechanisms

S

You, Jiaxuan, Zhitao Ying, and Jure Leskovec. "Design 
space for graph neural networks." Advances in Neural 
Information Processing Systems 33 (2020)
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Understand Graph Neural Networks 

๏ Method Overview:

- Goal: Understand Graph Neural Network in Theory

- Advantage: Theoretical understanding in perspective of 
approximation theory and spectral graph theory

- Higher-order: polynomial and rational approximation
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Normalization
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Normalization

๏ Suppose a two-cluster partitioning for A and B

- Ratio Cut: 𝑐𝑢𝑡(𝐴,𝐵)( )

- Normalized Cut: 𝑐𝑢𝑡(𝐴,𝐵)( )

1
|A |

+
1

|B |

1
Vol(A)

+
1

Vol(B)
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Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17 (2007): 395-416.

Spatial



Normalization

๏ Suppose a two-cluster partitioning for A and B

- Ratio Cut: 𝑐𝑢𝑡(𝐴,𝐵)( )1
|A |

+
1

|B |
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Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17 (2007): 395-416.

arg min
f

=
fTL f
f T f

The following quotient is minimized when f = u2Rayleigh-Ritz Theorem 

Spatial



Normalization

๏ Suppose a two-cluster partitioning for A and B

- Normalized Cut: 𝑐𝑢𝑡(𝐴,𝐵)( )1
Vol(A)

+
1

Vol(B)

20

Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17 (2007): 395-416.

arg min
f

fTL f
f TDf′￼

= min
fT L̃ f
f T f

The following quotient is minimized when f = u2Rayleigh-Ritz Theorem 

Spatial



Normalization

๏ Left normalization (row-wise)

- Row: normalized by the diagonal entry

- E.g.,  

๏ Right normalization (column-wise)

- E.g., 

๏ Symmetric normalization 

- E.g., 

a2,3 ←
a2,3

d2

a2,3 ←
a2,3

d3

a2,3 ←
a2,3

d2 d3

21Wang, Yewen, et al. "Demystifying graph neural network via graph filter assessment." (2019).

Spatial



Case Study: GCN
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2 ÂD− 1

2 X = D− 1
2 (I + A)D− 1

2 X = (I + Ã)X Z = D− 1
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Case Study: DeepWalk

๏ Draw a group of random paths from a graph
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๏ Let the window size (path length) of skip-gram be 2𝑡+1and the current 
node is the (t+1)-th

Img credit: DOI: (10.1002/sim.9346) 

Spatial



Spatial-based GNN
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1

t + 1
P(Ã)X
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Spectral-based GNN
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Polynomial and Rational
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Polynomial approximation

simple form, well known properties
computationally easy to use

easy to compute  
hard to be accurate

moderately easy to compute  
easy to be accurate

moderately simple form, not well-known properties
moderately easy to handle computationally

notorious for oscillations between exact-fit value
only high degree can model complicated structure
poor interpolatory/extrapolatory/asymptotic properties

excellent for oscillations between exact-fit value
model complicated structure with a fairly low degree
excellent interpolatory/extrapolatory/asymptotic properties

func: target function;       
poly: polynomial approximation        
rat: rational approximation

Rational approximation

Spectral



Beyond Polynomial: Rational Model
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Rational Neural Network: iteratively close to the target
[Screenshots in every 100 epochs]

Telgarsky, M. (2017, July). Neural networks and rational functions. In International Conference on Machine Learning 
Boullé, N., Nakatsukasa, Y., & Townsend, A. (2020). Rational neural networks. Advances in neural information processing systems
Zhiqian Chen, et al. Rational Neural Networks for Approximating Graph Convolution Operator on Jump Discontinuities, ICDM 2018



Beyond Polynomial: Rational Model
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Polynomial

Rational

graph Laplacian

node attributes

Thomas N. Kipf et al. (2016)

Z. Chen et al. (2018)
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Polynomial

Label propagation

Rational

Label propagation
Reverse Label propagation

2 18

10 10
Pull

Pull

5 15

Over-smooth issue

Beyond Polynomial: Rational Model
Spatial
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Polynomial

Label propagation

Rational

Label propagation
Reverse Label propagation

Beyond Polynomial: Rational Model
Spatial



Beyond Polynomial: Rational Model
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Personalized Page Rank  
(information retrieval)

πppr (ix) = (1 − α) ̂̃Aπppr (ix) + αix

Johannes Klicpera et al. (2018)

(1 − α) α

Spatial

α
1 − (1 − α)λ



Beyond Polynomial: Rational Model
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ARMA 
(time series)

X(t+1) = aMX(t) + bX

Personalized Page Rank  
(information retrieval)

πppr (ix) = (1 − α) ̂̃Aπppr (ix) + αix

next current original= +

2

1

1

2

2

1

Filippo Maria Bianchi et al. (2018)Johannes Klicpera et al. (2018)

α β

(1 − α) α a b

Spatial



Spatial-based GNN
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Spectral-based GNN
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Spatial Domain A0
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The Unified Framework
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Connectivity
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๏ Approximation by Implicit Matrix Factorization (MF)

- Word2Vec                                     W2V as Implicit MF 
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Spatial v.s. Spectral

Tomas Mikolvet et al. (2013) Omer Levy et al. (2014)

Shifted PMI (co-occurrence matrix)

Matrix Factorization, O( )n3
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Spatial v.s. Spectral

Uri Shaham et al. (2018)

๏ Approximation by Implicit Matrix Factorization (MF)

- SpectralNet

Matrix Factorization



Spatial v.s. Spectral
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๏ Approximation by Implicit Matrix Factorization (MF)

- DeepWalk Bryan Perozzi et al. (2014)

Qiu, Jiezhong, et al. "Network embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec.” 
Proceedings of the eleventh ACM international conference on web search and data mining. 2018.

#edge

#step

#window



Why Rational, and Why Not?

๏ Most graph signals are homophily (not homogenous)

- Low-frequency signals

๏ Approximation theory: rational is better when order  5

- Target signals (function of eigenvalues) should be not simple, smooth.

๏ Computational Complexity

- Matrix Inversion

≥

40

Maehara, T. (2019). Revisiting graph neural networks: All we have is low-pass filters. arXiv preprint arXiv:1905.09550.



Future Direction

๏ PDE

- Wave v.s. Diffusion 

๏ Spectral graph beyond simple type

- Signed, directed, hypergraph, multilayer network

๏ Dynamic graph

- Graph wavelet

๏ LLM

41
Strauss, W. A. (2007). Partial differential equations: An introduction. John Wiley & Sons.



Related Resources
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github.com/XGraph-Team/Spectral-Graph-Survey
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Conclusion

๏ Connection between spectral and spatial domain

- Spatial: function of adjacency matrix

- Spectral: function of eigenvalues

๏ Linear, polynomial and rational function

- more power, more computation

๏ Computation

- Spatial method: iterative and cheap approximation

- Spectral method: one-step, expensive and exact
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