Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks

Zhiqian Chen, Ph.D.

Assistant Professor

Computer Science And Engineering
Mississippi State University
universitym

Outline

- Research Overview

- Framework
- Graph Convolution
- Linear, Polynomial, Rational
- Discussion
- Conclusion

Graph Machine Learning

Machine Learning

 Block SplitGraph Machine Learning Geometric Split

Graph is Pervasive

$\frac{\text { Particle System }}{\text { (Physics) }}$

Convolutional Neural Layer

Challenge for non-Euclidean

dynamic \# of neighbors

Outline

- Research Overview
- Framework
- Graph Convolution
- Linear, Polynomial, Rational
- Discussion
- Conclusion

Spectral Analysis

credit: giphy

$\square=w_{0} \cdot \square+w_{1} \cdot \Omega+w_{2} \cdot \bigcap+w_{3} \cdot \bigcap+\ldots$

Spectral Analysis for Graph

Graph Structure

Graph Signal (e.g.,Traffic Speed)

What is Graph Convolution

© Convolution Theorem

- Fourier transform of the convolution of two functions is equal to the point-wise multiplication of their Fourier transforms.

Convolution theorem

$$
f(x, y) * h(x, y) \Leftrightarrow F(u, v) H(u, v)
$$

Space convolution = frequency multiplication

What is Graph Convolution

What is Graph Convolution

Motivation: A Unified View

- What is the space and frequency look like in graph domain?

Convolution theorem

$$
f(x, y) * h(x, y) \Leftrightarrow F(u, v) H(u, v)
$$

[^0]
Motivation: A Unified View

- A large number of graph neural networks, with different mechanisms

S	Spatial
S	Spectral

Design space

[^1]- Challenge for research: no uniform framework to compare them

Outline

- Research Overview
- Framework
- Graph Convolution
- Linear, Polynomial, Rational
- Discussion
- Conclusion

Understand Graph Neural Networks

- Method Overview:
- Goal: Understand Graph Neural Network in Theory
- Advantage: Theoretical understanding in perspective of approximation theory and spectral graph theory
- Higher-order: polynomial and rational approximation
a. Zhiqian Chen, Fanglan Chen, Lei Zhang, Taoran Ji, Kaiqun Fu, Liang Zhao, Feng Chen, Lingfei Wu, Charu Aggarwal, Chang-Tien Lu.
"Bridging the gap between spatial and spectral domains: A unified framework for graph neural networks." ACM Computing Survey, 2023
b. Zhiqian Chen, Feng Chen, Rongjie Lai, Xuchao Zhang, Chang-Tien Lu. Rational Neural Networks for Approximating Graph Convolution Operator on Jump Discontinuities, IEEE International Conference on Data Mining (ICDM) 2018

Normalization

Table 2. Representations for graph topology

Notations	Descriptions
\mathbf{A}	Adjacency matrix
\mathbf{L}	Graph Laplacian
$\tilde{\mathbf{A}}=\mathbf{A + \mathbf { I }}$	Adjacency with self loop
$\mathbf{D}^{-1} \mathbf{A}$	Random walk row normalized adjacency
$\mathbf{A D}^{-1}$	Random walk column normalized adjacency
$\mathbf{D}^{-1 / 4} \mathbf{A} \mathbf{D}^{-1 / 4}$	Symmetric normalized adjacency
$\tilde{\mathbf{D}}^{-1} \tilde{\mathbf{A}}$	Left renormalized adjacency, $\tilde{\mathbf{D}}_{i i}=\sum_{j} \tilde{\mathbf{A}}_{i j}$
$\tilde{\mathbf{A}}^{-1}$	Right renormalized
$\tilde{\mathbf{D}}^{-1 / 2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1 / 2}$	Symmetric renormalized
$\left(\tilde{\mathbf{D}}^{-1} \tilde{\mathbf{A}}\right)^{k}$	Powers of left renormalized adjacency
$\left(\tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1}\right)^{k}$	Powers of right renormalized adjacency

Normalization

- Suppose a two-cluster partitioning for A and B
- Ratio Cut: $\operatorname{cut}(A, B)\left(\frac{1}{|A|}+\frac{1}{|B|}\right)$
_ Normalized Cut: $\operatorname{cut}(A, B)\left(\frac{1}{\operatorname{Vol}(A)}+\frac{1}{\operatorname{Vol}(B)}\right)$

Normalization

- Suppose a two-cluster partitioning for A and B - Ratio Cut: $\operatorname{cut}(A, B)\left(\frac{1}{|A|}+\frac{1}{|B|}\right)$

Rayleigh-Ritz Theorem The following quotient is minimized when $f=u_{2}$

$$
\arg \min _{f}=\frac{f^{T} L f}{f^{T} f}
$$

Normalization

- Suppose a two-cluster partitioning for A and B
_ Normalized Cut: $\operatorname{cut}(A, B)\left(\frac{1}{\operatorname{Vol}(A)}+\frac{1}{\operatorname{Vol}(B)}\right)$
Rayleigh-Ritz Theorem The following quotient is minimized when $f=u_{2}$

$$
\arg \min _{f} \frac{f^{T} L f}{f^{T} D f^{\prime}}=\min \frac{f^{T} \tilde{L} f}{f^{T} f}
$$

Normalization

- Left normalization (row-wise)
- Row: normalized by the diagonal entry
_ E.g., $a_{2,3} \leftarrow \frac{a_{2,3}}{d_{2}}$
- Right normalization (column-wise)
- E.g., $a_{2,3} \leftarrow \frac{a_{2,3}}{d_{3}}$
- Symmetric normalization
- E.g., $a_{2,3} \leftarrow \frac{a_{2,3}}{\sqrt{d_{2}} \sqrt{d_{3}}}$

Case Study: GCN

Space (vertex) domain

$$
\mathbf{Z}=\mathbf{D}^{-\frac{1}{2}} \hat{\mathbf{A}} \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=\mathbf{D}^{-\frac{1}{2}}(\mathbf{I}+\mathbf{A}) \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=(\mathbf{I}+\tilde{\mathbf{A}}) \mathbf{X}
$$

Frequency domain

$$
\mathbf{Z}=\mathbf{D}^{-\frac{1}{2}}(\mathbf{A}+\mathbf{I}) \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=\mathbf{D}^{-\frac{1}{2}}(\mathbf{D}-\mathbf{L}+\mathbf{I}) \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=\mathbf{U}(2-\Lambda) \mathbf{U}^{\top} \mathbf{X}
$$

Case Study: DeepWalk

- Draw a group of random paths from a graph

$$
\tilde{\mathrm{A}}=\mathrm{D}^{-1} \mathrm{~A}
$$

- Let the window size (path length) of skip-gram be $2 t+1$ and the current node is the ($\mathrm{t}+1$)-th

$$
\mathrm{Z}=\frac{1}{t+1}\left(\mathbf{I}+\tilde{\mathrm{A}}+\tilde{\mathrm{A}}^{2}+\ldots+\tilde{\mathrm{A}}^{t}\right) \mathbf{X}
$$

Spatial-based GNN

Spatial

function of Adjacency

Linear

$$
\begin{aligned}
& \mathbf{G C N} \text { Thomas N. Kipf et al. (2016) } \\
& \qquad \mathbf{Z}=\hat{\mathbf{D}}^{-\frac{1}{2}} \hat{\mathbf{A}} \hat{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X}=\hat{\mathbf{D}}^{-\frac{1}{2}}(\mathbf{I}+\mathbf{A}) \hat{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X}=(\mathbf{I}+\tilde{\mathbf{A}}) \mathbf{X}
\end{aligned}
$$

GraphSAGE Will Hamilton et al. (2017)

$$
\mathbf{Z}=\mathbf{D}^{-\frac{1}{2}}(\mathbf{I}+\mathbf{A}) \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=(\mathbf{I}+\tilde{\mathbf{A}}) \mathbf{X}
$$

GIN Xukeyu Lu et al. (2019)

$$
\mathbf{Z}=(1+\epsilon) \cdot \mathbf{h}(v)+\sum_{u_{j} \in \mathcal{N}\left(v_{i}\right)} \mathbf{h}_{\left(u_{j}\right)}=[(1+\epsilon) \mathbf{I}+\mathbf{A}] \mathbf{X}
$$

DeepWalk Bryan Perozzi et al. (2014)

$\mathbf{Z}=\frac{1}{t+1}\left(\mathbf{I}+\tilde{\mathbf{A}}+\tilde{\mathbf{A}}^{2}+\ldots+\tilde{\mathbf{A}}^{t}\right) \mathbf{X}=\frac{1}{t+1} \mathbf{P}(\tilde{\mathbf{A}}) \mathbf{X}$
ChebyNet Defferrard, Michael et al. (2016)
$\mathbf{Z}=\sum_{k=0}^{K-1} \theta_{k} T_{k}(\tilde{\mathbf{L}}) \mathbf{X}=\left[\tilde{\theta}_{0} \mathbf{I}+\tilde{\theta}_{1}(\mathbf{I}-\tilde{\mathbf{A}})+\tilde{\theta}_{2}(\mathbf{I}-\tilde{\mathbf{A}})^{2}+\ldots\right] \mathbf{x}=\left(\phi \mathbf{I}+\sum_{i=1}^{k} \mu_{i} \tilde{\mathbf{A}}^{i}\right) \mathbf{X}=\mathbf{P}(\tilde{\mathbf{A}}) \mathbf{X}$
Node2Vec Aditya Grover et al. (2016)

$$
\mathbf{Z}=\left(\frac{1}{p} \cdot \mathbf{I}+\tilde{\mathbf{A}}+\frac{1}{q}\left(\tilde{\mathbf{A}}^{2}-\tilde{\mathbf{A}}\right)\right) \mathbf{X}=\left[\frac{1}{p} \mathbf{I}+\left(1-\frac{1}{q}\right) \tilde{\mathbf{A}}+\frac{1}{q} \tilde{\mathbf{A}}^{2}\right] \mathbf{X}=\mathbf{P}(\tilde{\mathbf{A}}) \mathbf{X}
$$

Spectral-based GNN

Spectral

function of Eigenvalues

Linear

GCN Thomas N. Kipf et al. (2016)

$$
\mathbf{Z}=\tilde{\mathbf{A}} \mathbf{X}=\mathbf{D}^{-\frac{1}{2}}(\mathbf{A}+\mathbf{I}) \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=\mathbf{D}^{-\frac{1}{2}}(\mathbf{D}-\mathbf{L}+\mathbf{I}) \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=(\mathbf{I}-\mathbf{L}+\mathbf{I}) \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=\mathbf{U}(2-\Lambda) \mathbf{U}^{\top} \mathbf{X}
$$

GraphSAGE Will Hamilton et al. (2017)

GIN Xukeyu Lu et al. (2019)
$\mathbf{Z}=\mathbf{D}^{-\frac{1}{2}}[(1+\epsilon) \mathbf{I}+\mathbf{A}] \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=\mathbf{D}^{-\frac{1}{2}}[(2+\epsilon) \mathbf{I}-\tilde{\mathrm{L}}] \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=\mathbf{U}(2+\epsilon-\Lambda) \mathbf{U}^{\top} \mathbf{X}$

DeepWalk Bryan Perozzi et al. (2014)

$$
\mathbf{Z}=\frac{1}{t+1}\left(\mathbf{I}+(\mathbf{I}-\tilde{\mathbf{L}})+(\mathbf{I}-\tilde{\mathbf{L}})^{2}+\ldots+(\mathbf{I}-\tilde{\mathbf{L}})^{t}\right) \mathbf{X}=\mathbf{U}\left(\theta_{0}+\theta_{1} \boldsymbol{\Lambda}+\theta_{2} \mathbf{\Lambda}^{2}+\ldots+\theta_{t} \mathbf{\Lambda}^{t}\right) \mathbf{U}^{\top} \mathbf{X}
$$

ChebyNet Defferrard, Michael et al. (2016)

$$
\mathbf{Z}=\sum_{k=0}^{K-1} \theta_{k} T_{k}(\tilde{\mathbf{L}}) \mathbf{X}=\mathbf{U}\left(\tilde{\theta}_{0} \cdot 1+\tilde{\theta}_{1} \Lambda+\tilde{\theta}_{2} \Lambda^{2}+\ldots\right) \mathbf{U}^{\top} \mathbf{X}
$$

Node2Vec Aditya Grover et al. (2016)

$$
\mathbf{Z}=\left[\left(1+\frac{1}{p}\right) \mathbf{I}-\left(1+\frac{1}{q}\right) \tilde{\mathbf{L}}+\frac{1}{q} \tilde{\mathbf{L}}^{2}\right] \mathbf{X}=\mathbf{U}\left[\left(1+\frac{1}{p}\right)-\left(1+\frac{1}{q}\right) \tilde{\Lambda}+\frac{1}{q} \tilde{\Lambda}^{2}\right] \mathbf{U}^{\top} \mathbf{X}
$$

Polynomial and Rational

Polynomial approximation

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

simple form, well known properties

computationally easy to use

notorious for oscillations between exact-fit value only high degree can model complicated structure poor interpolatory/extrapolatory/asymptotic properties

$$
f(x)=\frac{p(x)}{q(x)}
$$

moderately simple form, not well-known properties moderately easy to handle computationally
excellent for oscillations between exact-fit value model complicated structure with a fairly low degree
excellent interpolatory/extrapolatory/asymptotic properties

Beyond Polynomial: Rational Model

[Screenshots in every 100 epochs]
Rational Neural Network: iteratively close to the target

Beyond Polynomial: Rational Model

Polynomial

Thomas N. Kipf et al. (2016)
$\mathbf{g} * x=\mathbf{U g}(\mathbf{\Lambda}) \mathbf{U}^{\boldsymbol{\top}} x$
$\approx \mathbf{U} \sum_{k} \theta_{k} T_{k}(\tilde{\boldsymbol{\Lambda}}) \mathbf{U}^{\top} x \quad\left(\tilde{\boldsymbol{\Lambda}}=\frac{2}{\lambda_{\max }} \boldsymbol{\Lambda}-\mathbf{I}_{\mathbf{N}}\right)$
$=\sum_{k} \theta_{k} T_{k}(\tilde{\mathbf{L}}) x$
$\left(\mathbf{U} \boldsymbol{\Lambda}^{k} \mathbf{U}^{\boldsymbol{\top}}=\left(\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\boldsymbol{\top}}\right)^{k}\right)$
$=\mathbf{P}(\mathbf{L}) x$

Rational z. Chen etal. (2018)

$$
\begin{aligned}
& \mathrm{g}_{\theta} * x=\mathbf{U} \mathrm{g}_{\theta} \mathbf{U}^{\top} x \\
& \approx\left(\begin{array}{l}
\text { (convolution theorem) } \\
1+\sum_{i=0}^{n} \psi_{i} \tilde{\boldsymbol{\Lambda}}^{i} \phi_{j} \tilde{\boldsymbol{\Lambda}}^{j} \\
\mathbf{U}^{\top} x
\end{array}\right. \\
&\left.=\mathbf{U} \frac{\mathbf{\Lambda}(\boldsymbol{\Lambda})}{\frac{\boldsymbol{\Lambda}}{\mathbf{Q}(\mathbf{\Lambda})} \mathbf{U}^{\top} x,}\right) \\
&= \mathbf{P}(\mathbf{L}) \mathbf{Q}(\mathbf{L})^{-1} x
\end{aligned}
$$

Beyond Polynomial: Rational Model

Polynomial

$\mathbf{P}(\mathbf{L}) x$

Label propagation

Rational
$\mathbf{P}(\mathbf{L}) \mathbf{Q}(\mathbf{L})^{-1} x$
Label propagation
Reverse Label propagation

Pull Over-smooth issue

Beyond Polynomial: Rational Model

Polynomial

$\mathbf{P}(\mathbf{L}) x$

Label propagation

Rational

Fig. 6. Left: Residual Learning $x^{\prime}=F(x)+x$; Right: Rational Aggregation: $x^{\prime}=F(x)+x$

Reverse Label propagation

Beyond Polynomial: Rational Model

Johannes Klicpera et al. (2018)
Personalized Page Rank (information retrieval)

$$
\begin{aligned}
\boldsymbol{\pi}_{\mathrm{ppr}}\left(\boldsymbol{i}_{x}\right)= & (1-\alpha) \hat{\tilde{A}} \boldsymbol{\pi}_{\mathrm{ppr}}\left(\boldsymbol{i}_{x}\right)+\alpha \boldsymbol{i}_{x} \\
& (1-\alpha)
\end{aligned}
$$

PPNP
Personalized Propagation of Neural Predictions

Use personalized PageRank matrix $\boldsymbol{\Pi}_{\mathrm{ppr}}$ to propagate further while retaining information about root node, adjust via teleport probability α :

$$
\boldsymbol{\Pi}_{\mathrm{ppr}}=\alpha\left(\boldsymbol{I}_{n}-(1-\alpha) \hat{\tilde{\boldsymbol{A}}}\right)^{-1}
$$

$\frac{\alpha}{1-(1-\alpha) \lambda}$

Beyond Polynomial: Rational Model

Johannes Klicpera et al. (2018)
Personalized Page Rank
(information retrieval)

$$
\begin{aligned}
\boldsymbol{\pi}_{\mathrm{ppr}}\left(\boldsymbol{i}_{x}\right)= & (1-\alpha) \hat{\tilde{A}} \boldsymbol{\pi}_{\mathrm{ppr}}\left(\boldsymbol{i}_{x}\right)+\alpha \boldsymbol{i}_{x} \\
& (1-\alpha)
\end{aligned}
$$

Filippo Maria Bianchi etal. (2018)

ARMA

(time series)

$$
\begin{gathered}
\overline{\mathbf{X}}^{(t+1)}=a \mathbf{M} \overline{\mathbf{X}}^{(t)}+b \mathbf{X} \\
a
\end{gathered}
$$

$$
\text { next }=\alpha \text { current }+\beta \text { original }
$$

Spatial-based GNN

function of Adjacency

Linear

GCN Thomas N. Kipf etal. (2016)

$$
\mathbf{Z}=\hat{\mathbf{D}}^{-\frac{1}{2}} \hat{\mathbf{A}} \hat{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X}=\hat{\mathbf{D}}^{-\frac{1}{2}}(\mathbf{I}+\mathbf{A}) \hat{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X}=(\mathbf{I}+\tilde{\mathbf{A}}) \mathbf{X}
$$

GraphSAGE Will Hamilton et al. (2017)

$$
\dot{\mathbf{Z}}=\mathbf{D}^{-\frac{1}{2}}(\mathbf{I}+\mathbf{A}) \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=(\mathbf{I}+\tilde{\mathbf{A}}) \mathbf{X}
$$

GIN Xukeyu Lu et al. (2019)

$$
\mathbf{Z}=(1+\epsilon) \cdot \mathbf{h}(v)+\sum_{u_{j} \in \mathcal{N}\left(v_{i}\right)} \mathbf{h}_{\left(u_{j}\right)}=[(1+\epsilon) \mathbf{I}+\mathbf{A}] \mathbf{X}
$$

DeepWalk Bryan Perozzi et al. (2014)

$$
\mathbf{Z}=\frac{1}{t+1}\left(\mathbf{I}+\tilde{\mathbf{A}}+\tilde{\mathbf{A}}^{2}+\ldots+\tilde{\mathbf{A}}^{t}\right) \mathbf{X}=\frac{1}{t+1} \mathbf{P}(\tilde{\mathbf{A}}) \mathbf{X}
$$

ChebyNet Defferrard, Michael et al. (2016)

$$
\mathbf{Z}=\sum_{k=0}^{K-1} \theta_{k} T_{k}(\tilde{\mathbf{L}}) \mathbf{X}=\left[\tilde{\theta}_{0} \mathbf{I}+\tilde{\theta}_{1}(\mathbf{I}-\tilde{\mathbf{A}})+\tilde{\theta}_{2}(\mathbf{I}-\tilde{\mathbf{A}})^{2}+\ldots\right] \mathbf{x}=\left(\phi \mathbf{I}+\sum_{i=1}^{k} \psi_{i} \tilde{\mathbf{A}}^{i}\right) \mathbf{X}=\mathbf{P}(\tilde{\mathbf{A}}) \mathbf{X}
$$

Node2Vec Aditya Grover et al. (2016)

$$
\mathbf{Z}=\left(\frac{1}{p} \cdot \mathbf{I}+\tilde{\mathbf{A}}+\frac{1}{q}\left(\tilde{\mathbf{A}}^{2}-\tilde{\mathbf{A}}\right)\right) \mathbf{X}=\left[\frac{1}{p} \mathbf{I}+\left(1-\frac{1}{q}\right) \tilde{\mathbf{A}}+\frac{1}{q} \tilde{\mathbf{A}}^{2}\right] \mathbf{X}=\mathbf{P}(\tilde{\mathbf{A}}) \mathbf{X}
$$

Personalized PageRank Johannes Klicpera etal. (2018)

$$
\mathbf{Z}=\frac{\alpha}{\mathbf{I}-(1-\alpha) \tilde{\mathbf{A}}} \mathbf{X}
$$

ARMA Filter Filippo Maria Bianchi et al. (2018)

$$
\mathbf{Z}=\frac{b}{\mathbf{I}-a \tilde{\mathbf{A}}} \mathbf{X}
$$

Auto Regressive Filter Qimai Lietal. (2019)

$$
\mathbf{Z}=(\mathbf{I}+\alpha \tilde{\mathbf{L}})^{-1} \mathbf{X}=\frac{\mathbf{I}}{\mathbf{I}+\alpha(\mathbf{I}-\tilde{\mathbf{A}})} \mathbf{X}
$$

Spectral-based GNN

function of Eigenvalues
Spectral

Linear

$$
\begin{aligned}
& \mathbf{G C N} \text { Thomas N. Kipf et al. (2016) } \\
& \qquad \mathbf{Z}=\tilde{\mathbf{A}} \mathbf{X}=\mathbf{D}^{-\frac{1}{2}}(\mathbf{A}+\mathbf{I}) \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=\mathbf{D}^{-\frac{1}{2}}(\mathbf{D}-\mathbf{L}+\mathbf{I}) \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=(\mathbf{I}-\mathbf{L}+\mathbf{I}) \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=\mathbf{U}(2-\Lambda) \mathbf{U}^{\top} \mathbf{X}
\end{aligned}
$$

GraphSAGE will Hamilton et al. (2017)

$$
\mathrm{Z}=\mathrm{D}^{-\frac{1}{2}}(\mathrm{I}+\mathrm{A}) \mathrm{D}^{-\frac{1}{2}} \mathrm{X}=(\mathrm{I}+\tilde{\mathrm{A}}) \mathrm{X}=(2 \mathrm{I}-\tilde{\mathrm{L}}) \mathrm{X}=\mathrm{U}(2-\Lambda) \mathrm{U}^{\top} \mathrm{X}
$$

GIN Xukeyu Lu et al. (2019)

$$
\mathbf{Z}=\mathbf{D}^{-\frac{1}{2}}[(1+\epsilon) \mathbf{I}+\mathbf{A}] \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=\mathbf{D}^{-\frac{1}{2}}[(2+\epsilon) \mathbf{I}-\tilde{\mathrm{L}}] \mathbf{D}^{-\frac{1}{2}} \mathbf{X}=\mathbf{U}(2+\epsilon-\Lambda) \mathbf{U}^{\top} \mathbf{X}
$$

DeepWalk Bryan Perozzi et al. (2014)

$$
\mathbf{Z}=\frac{1}{t+1}\left(\mathbf{I}+(\mathbf{I}-\tilde{\mathbf{L}})+(\mathbf{I}-\tilde{\mathbf{L}})^{2}+\ldots+(\mathbf{I}-\tilde{\mathbf{L}})^{\prime}\right) \mathbf{X}=\mathbf{U}\left(\theta_{0}+\theta_{1} \boldsymbol{\Lambda}+\theta_{2} \mathbf{\Lambda}^{2}+\ldots+\theta_{t} \boldsymbol{\Lambda}^{t}\right) \mathbf{U}^{\top} \mathbf{X}
$$

ChebyNet Defferrard, Michael et al. (2016)

$$
\mathbf{Z}=\sum_{k=0}^{K-1} \theta_{k} T_{k}(\tilde{\mathbf{L}}) \mathbf{X}=\mathbf{U}\left(\tilde{\theta}_{0} \cdot 1+\tilde{\theta}_{1} \Lambda+\tilde{\theta}_{2} \Lambda^{2}+\ldots\right) \mathbf{U}^{\top} \mathbf{X}
$$

Node2Vec Aditya Grover et al. (2016)

$$
\mathbf{Z}=\left[\left(1+\frac{1}{p}\right) \mathbf{I}-\left(1+\frac{1}{q}\right) \tilde{\mathbf{L}}+\frac{1}{q} \tilde{\mathbf{L}}^{2}\right] \mathbf{X}=\mathbf{U}\left[\left(1+\frac{1}{p}\right)-\left(1+\frac{1}{q}\right) \tilde{\Lambda}+\frac{1}{q} \tilde{\Lambda}^{2}\right] \mathbf{U}^{\top} \mathbf{X}
$$

Personalized PageRank Johannes Klicpera et al. (2018)

$$
\mathbf{Z}=\frac{\alpha}{\mathbf{I}-(1-\alpha)(\mathbf{I}-\tilde{\mathbf{L}})} \mathbf{X}=\mathbf{U} \frac{\alpha}{\alpha \mathbf{I}+(1-\alpha) \Lambda} \mathbf{U}^{\top} \mathbf{X}
$$

ARMA Filter Filippo Maria Bianchi et al. (2018)

$$
\mathbf{Z}=\frac{b}{1-a(\mathbf{I}-\tilde{\mathbf{L}})} \mathbf{X}=\mathbf{U} \frac{b}{(1-a) \mathbf{I}+a \Lambda} \mathbf{U}^{\top} \mathbf{X}
$$

Auto Regressive Filter Qimai Lietal. (2019)

$$
\mathbf{Z}=(\mathbf{I}+\alpha \tilde{\mathbf{L}})^{-1} \mathbf{X}=\mathbf{U} \frac{1}{1+\alpha(1-\Lambda)} \mathbf{U}^{\top} \mathbf{X}
$$

The Unified Framework

Spatial

Spectral

Outline

- Research Overview
- Framework
- Graph Convolution
- Linear, Polynomial, Rational
- Discussion
- Conclusion

Spatial v.s. Spectral

	Methodology	Computation	Space Complexity	Stability
Spectral	Global	One-step	High	Exact
Spatial	Local	Iterative	Low	Approximate

- Approximation by Implicit Matrix Factorization (MF)
- Word2Vec Tomas Mikolvet etal. (2013)

W2V as Implicit MF omer Levyetal (2014)

Matrix Factorization, $O\left(n^{3}\right)$

Shifted PMI (co-occurrence matrix)

Spatial v.s. Spectral

	Methodology	Computation	Space Complexity	Stability
Spectral	Global	One-step	High	Exact
Spatial	Local	Iterative	Low	Approximate

- Approximation by Implicit Matrix Factorization (MF)
- SpectralNet Urishahametal. (2018)

Matrix Factorization
$L_{\text {SpectralNet }}(\theta)=\frac{1}{m^{2}} \sum_{i, j=1}^{m} W_{i, j}\left\|y_{i}-y_{j}\right\|^{2}$

Spatial v.s. Spectral

	Methodology	Computation	Space Complexity	Stability
Spectral	Global	One-step	High	Exact
Spatial	Local	Iterative	Low	Approximate

- Approximation by Implicit Matrix Factorization (MF)
- DeepWalk Bryan Perozzi etal. (2014)

$$
\begin{aligned}
& \log \left(\frac{|(w, c)| \cdot|\mathcal{D}|}{|w| \cdot|c|}\right)-\log b=A \boldsymbol{B}^{\top} \\
& \log (\mathbf{P}(\tilde{\mathbf{A}}))-\log (b)=\log \left(\frac{|E|}{T}\left(\sum_{r=1}^{T}\left(\mathbf{D}^{-1} \mathbf{A}\right)^{\frac{\gamma}{r}}\right) \mathbf{D}^{-1}\right)-\log (b)
\end{aligned}
$$

Why Rational, and Why Not?

- Most graph signals are homophily (not homogenous)
- Low-frequency signals

Maehara, T. (2019). Revisiting graph neural networks: All we have is low-pass filters. arXiv preprint arXiv:1905.09550.

- Approximation theory: rational is better when order ≥ 5
- Target signals (function of eigenvalues) should be not simple, smooth.
- Computational Complexity
- Matrix Inversion

Future Direction

- PDE
- Wave v.s. Diffusion
- Spectral graph beyond simple type
- Signed, directed, hypergraph, multilayer network
- Dynamic graph
- Graph wavelet

○ LLM
2.5 COMPARISON OF WAVES AND DIFFUSIONS

Property		Waves	Diffusions
(i)	Speed of propagation?	Finite ($\leq c$)	Infinite
(ii)	Singularities for $t>0$?	Transported along characteristics $($ speed $=c)$	Lost immediately
(iii)	Well-posed for $t>0$?	Yes	Yes (at least for bounded solutions)
(iv)	Well-posed for $t<0$?	Yes	No
(v)	Maximum principle	No	Yes
(vi)	Behavior as $t \rightarrow+\infty$?	Energy is constant so does not decay	Decays to zero (if ϕ integrable)
(vii)	Information	Transported	Lost gradually

Related Resources

Awesome Spectral Graph Neural Networks

```
PRs Welcome to awesome
```


Contents

- Survey Papers
- Milestone Papers
- Spatial and Spectral Views
- Twin Papers
- Applications
- Code
- Citation

github.com/XGraph-Team/Spectral-Graph-Survey

Outline

- Research Overview
- Framework
- Graph Convolution
- Linear, Polynomial, Rational
- Discussion

Conclusion

- Connection between spectral and spatial domain
- Spatial: function of adjacency matrix
- Spectral: function of eigenvalues
- Linear, polynomial and rational function
- more power, more computation
- Computation
- Spatial method: iterative and cheap approximation
- Spectral method: one-step, expensive and exact

[^0]: Space convolution = frequency multiplication

[^1]: You, Jiaxuan, Zhitao Ying, and Jure Leskovec. "Design space for graph neural networks." Advances in Neural Information Processing Systems 33 (2020)

